solucion de problemas del metodo simplex mediante software
ejercicio 1:
Xi>=0
Mostrar Iteraciones
Xi = Variables de decisión
Si = Variables de holgura o superávit
Ai = Variables artificiales
Variable que entra: X2
Variable que sale: S1
Variable que entra: X1
Variable que sale: S2
X1 = 60
X2 = 30
S1 = 0
S2 = 0
Z = 5400
Xi>=0
Mostrar Iteraciones
Xi = Variables de decisión
Si = Variables de holgura o superávit
Ai = Variables artificiales
Variable que entra: X1
Variable que sale: S2
Variable que entra: X2
Variable que sale: S1
X1 = 20
X2 = 30
S1 = 0
S2 = 0
Z = 8500
Introduzca los coeficientes del problema:
| X1 | X2 | |||
| Max Z = | ||||
| Restricción 1 | ||||
| Restricción 2 |
| Max Z = | 50X1 | +80X2 | |||||||||||||||||||||
| Sujeto a: | |||||||||||||||||||||||
| X1 | +2X2 | <= | 120 | ||||||||||||||||||||
| X1 | +X2 | <= | 90 |
Mostrar Iteraciones
| Max Z = | 50X1 | +80X2 | +0S1 | +0S2 | ||
| Sujeto a: | ||||||
| 1X1 | +2X2 | +1S1 | = | 120 | ||
| 1X1 | +1X2 | +1S2 | = | 90 | ||
| Xi>=0 |
Xi = Variables de decisión
Si = Variables de holgura o superávit
Ai = Variables artificiales
Variable que entra: X2
Variable que sale: S1
| Max Z = | 50 | 80 | 0 | 0 | |||
| Coef | Base | X1 | X2 | S1 | S2 | R.H.S | Theta |
| 0 | S1 | 1 | 2 | 1 | 0 | 120 | 60 |
| 0 | S2 | 1 | 1 | 0 | 1 | 90 | 90 |
| Z | 0 | 0 | 0 | 0 | 0 | ||
| Ci-Zi | 50 | 80 | 0 | 0 |
| Gauss-Jordan:Fila Pivote | 1.0 | 2.0 | 1.0 | 0.0 | 1.2e+2 |
| Fila Pivote convertida | 0.50 | 1.0 | 0.50 | 0.0 | 60 |
| Restricción 2 | 1.0 | 1.0 | 0.0 | 1.0 | 90 |
| Fila pivote * -1.0 | -0.50 | -1.0 | -0.50 | 0.0 | -60 |
| Nueva restricción 2 | 0.50 | 0.0 | -0.50 | 1.0 | 30 |
Variable que entra: X1
Variable que sale: S2
| Max Z = | 50 | 80 | 0 | 0 | |||
| Coef | Base | X1 | X2 | S1 | S2 | R.H.S | Theta |
| 80 | X2 | 0.5 | 1 | 0.5 | 0 | 60 | 120 |
| 0 | S2 | 0.5 | 0 | -0.5 | 1 | 30 | 60 |
| Z | 40 | 80 | 40 | 0 | 4800 | ||
| Ci-Zi | 10 | 0 | -40 | 0 |
| Gauss-Jordan:Fila Pivote | 0.50 | 0.0 | -0.50 | 1.0 | 30 |
| Fila Pivote convertida | 1.0 | 0.0 | -1.0 | 2.0 | 60 |
| Restricción 1 | 0.50 | 1.0 | 0.50 | 0.0 | 60 |
| Fila pivote * -0.50 | -0.50 | 0.0 | 0.50 | -1.0 | -30 |
| Nueva restricción 1 | 0.0 | 1.0 | 1.0 | -1.0 | 30 |
| Max Z = | 50 | 80 | 0 | 0 | |||
| Coef | Base | X1 | X2 | S1 | S2 | R.H.S | Theta |
| 80 | X2 | 0 | 1 | 1 | -1 | 30 | 120 |
| 50 | X1 | 1 | 0 | -1 | 2 | 60 | 60 |
| Z | 50 | 80 | 30 | 20 | 5400 | ||
| Ci-Zi | 0 | 0 | -30 | -20 |
Solución
X1 = 60
X2 = 30
S1 = 0
S2 = 0
Z = 5400
ejercicio 2:
Introduzca los coeficientes del problema:
| X1 | X2 | |||
| Max Z = | ||||
| Restricción 1 | ||||
| Restricción 2 |
| Max Z = | 200X1 | +150X2 | |||||||||||||||||||||
| Sujeto a: | |||||||||||||||||||||||
| X1 | +2X2 | <= | 80 | ||||||||||||||||||||
| 3X1 | +2X2 | <= | 120 |
Mostrar Iteraciones
| Max Z = | 200X1 | +150X2 | +0S1 | +0S2 | ||
| Sujeto a: | ||||||
| 1X1 | +2X2 | +1S1 | = | 80 | ||
| 3X1 | +2X2 | +1S2 | = | 120 | ||
| Xi>=0 |
Xi = Variables de decisión
Si = Variables de holgura o superávit
Ai = Variables artificiales
Variable que entra: X1
Variable que sale: S2
| Max Z = | 200 | 150 | 0 | 0 | |||
| Coef | Base | X1 | X2 | S1 | S2 | R.H.S | Theta |
| 0 | S1 | 1 | 2 | 1 | 0 | 80 | 80 |
| 0 | S2 | 3 | 2 | 0 | 1 | 120 | 40 |
| Z | 0 | 0 | 0 | 0 | 0 | ||
| Ci-Zi | 200 | 150 | 0 | 0 |
| Gauss-Jordan:Fila Pivote | 3.0 | 2.0 | 0.0 | 1.0 | 1.2e+2 |
| Fila Pivote convertida | 1.0 | 0.67 | 0.0 | 0.33 | 40 |
| Restricción 1 | 1.0 | 2.0 | 1.0 | 0.0 | 80 |
| Fila pivote * -1.0 | -1.0 | -0.67 | 0.0 | -0.33 | -40 |
| Nueva restricción 1 | 0.0 | 1.3 | 1.0 | -0.33 | 40 |
Variable que entra: X2
Variable que sale: S1
| Max Z = | 200 | 150 | 0 | 0 | |||
| Coef | Base | X1 | X2 | S1 | S2 | R.H.S | Theta |
| 0 | S1 | 0 | 1.33 | 1 | -0.33 | 40 | 30 |
| 200 | X1 | 1 | 0.67 | 0 | 0.33 | 40 | 60 |
| Z | 200 | 133.33 | 0 | 66.67 | 8000 | ||
| Ci-Zi | 0 | 16.67 | 0 | -66.67 |
| Gauss-Jordan:Fila Pivote | 0.0 | 1.3 | 1.0 | -0.33 | 40 |
| Fila Pivote convertida | 0.0 | 1.0 | 0.75 | -0.25 | 30 |
| Restricción 2 | 1.0 | 0.67 | 0.0 | 0.33 | 40 |
| Fila pivote * -0.67 | 0.0 | -0.67 | -0.50 | 0.17 | -20 |
| Nueva restricción 2 | 1.0 | 0.0 | -0.50 | 0.50 | 20 |
| Max Z = | 200 | 150 | 0 | 0 | |||
| Coef | Base | X1 | X2 | S1 | S2 | R.H.S | Theta |
| 150 | X2 | 0 | 1 | 0.75 | -0.25 | 30 | 30 |
| 200 | X1 | 1 | 0 | -0.5 | 0.5 | 20 | 60 |
| Z | 200 | 150 | 12.5 | 62.5 | 8500 | ||
| Ci-Zi | 0 | 0 | -12.5 | -62.5 |
Solución
X1 = 20
X2 = 30
S1 = 0
S2 = 0
Z = 8500

Comentarios
Publicar un comentario